
International Journal of Scientific & Engineering Research, Volume 7, Issue 9, September-2016 1414
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

A Comparison of LXD, Docker and Virtual
Machine

Sapan Gupta, Deepanshu Gera

Abstract—In the virtualization industry, the container-based virtualization has recently seen a sudden spurt in interest, thanks to the
unprecedented popularity of Docker, a container management technology. LXD was introduced right after the appearance of Docker, as a
lightweight hypervisor for Linux containers. In this paper, we present the results of an experimental study that analyzes the performance of
a LXD container when compared to that of a Docker container and a Virtual Machine in a VMware ESX environment. Our results show that
Docker containers perform better than LXD in almost all cases with a plain virtual machine performance as a baseline. We further discuss
how LXD complements the Docker technology as a container management suite.

Index Terms—Benchmark, Containerization, Docker, LXD, Performance, Virtual Machine, Virtualization

————————————————————

1 INTRODUCTION

he advent of virtual machines heralded the world of infra-
structure in cloud. Now, the resources could be better uti-
lized and centrally controlled with the support for isolated

workloads (operating systems). Next, the power of Linux Con-
tainers [1] was introduced for the application level isolation on
an OS. Containers enabled sharing of the kernel resources
with the host as opposed to the one to one mapping between a
virtual machine and its kernel. Even though, containers are
restricted to a single kernel, they result in a much smaller
footprint compared to virtual machines as the sharing of the
kernel reduces the overhead of virtualizing the hardware, as
in the case of a virtual machine, and better utilizes the kernel
resources.

 Linux Containers utilize the power of many Linux kernel
level technologies for an operating system level virtualization
– concepts like kernel namespaces, chroot, control groups,
Linux Security Modules, network bridges etc. Docker made
the notion of application-level container virtualization a main-
stream technology. It utilized the APIs of the low level Linux
containers to provide a simple, clear and intuitive command
line experience with the additional features of application
packaging and distribution.

Soon after, LXD [2] was introduced as a lightweight full OS
system container solution on top of Linux Containers. While
Docker is designed to host a single application, LXD is compa-
rable to a virtual machine with the ability to host multiple OS
containers on a single host. LXD also uses Linux Container
APIs via liblxc and a set of Go bindings. It provides an alterna-
tive to Linux Container’s tools and template system, not un-
like Docker, but with the additional features of management
layer over network (REST API exposure), container memory
snapshot, checkpoint and restore with live container migration
and security by design. LXD offers the highest density of guest
OS containers per host among any other container solution.
LXD containers are designed to run clean Linux distributions
or appliances.

LXD provides a way to build on top of its network APIs to
fully automate the process of multiple container deployment
and management. A popular example of this is the develop-
ment of the OpenStack Nova plugin which allows the contain-
ers to be managed just like a normal virtual machine. Thus,

Docker containers can be easily nested inside the LXD operat-
ing system containers to benefit from this maintainability and
security of LXD.

This paper looks at the two kinds of recent containerization
technologies introduced so far, LXD and Docker and examines
the performances of a set of stress tests based on a number of
benchmarks for various aspects such as computation power,
memory bandwidth, memory latency, I/O bandwidth and
memory snapshot in both types of containers residing on a
VMware ESX host, against a plain Ubuntu virtual machine
acting as a normalizing factor.

With this experiment, we want to understand the perfor-
mance overhead that results due to the abstraction layers in-
troduced by Docker and LXD when compared to a plain vir-
tual machine. We expect these technologies to provide a simi-
lar performance experience in other hypervisors like KVM [3],
Microsoft Hyper-V [4], and Xen [5] due to a similarity in the
hardware acceleration features across this list. Since, Ubuntu is
used as the guest and host OS in the experiment, this analysis
should provide results which leads to a correct comparison.

We make the following contributions:
• We provide the latest comparison of LXD, Docker

and virtual machine environments using the in-
dustry standard hardware and software for inter-
esting benchmarks and workloads.

• We show that LXD is a comaparable to a virtual
machine in many use cases.

2 ENVIRONMENT
We used 2.80 GHz Intel Xeon CPU E5-2680 processors for a
total of 8 cores, 16 GB of RAM and 20 GB of disk storage for all
the test VMs. This is a basic server configuration that is easily
available in many Infrastructure as a Service (IaaS) cloud pro-
viders. We used Ubuntu 16.04.1 (XenialXerus) 64-bit with Li-
nux kernel 4.4.0-38-generic, Docker 1.12.1 and LXD 2.2. Both
types of containers reside on the VMs created on VMware ESX
6.0U2. For consistency, all the base VMs and the LXD contain-
ers used Ubuntu Xenial. Docker and LXD containers did not
have any restrictions configured against using the full re-
sources of the system under test. We used benchmark tests to

T

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 9, September-2016 1415
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

individually measure CPU, memory, and storage overhead.
The performance evaluation of running a Docker inside a LXD
container is out of scope for this research and is a part of fu-
ture works.

3 BENCHMARKS

As part of our experiment, we used a number of standard mi-
cro benchmarks and workloads mentioned below. Each test is
executed multiple times and the values reported are averaged
out.
Micro benchmarks:

1. Stream [6]: measures memory bandwidth by ex-
ercising CPU cores at their maximum limit.

2. Dbench [7]: generates I/O workloads used to
stress a filesystem to see at which workloads it
becomes saturated and can be used to analyze
how many concurrent requests can the server
handle before the response starts to lag.

3. RAMspeed SMP [8]: is used to test how fast are
both cache and memory subsystems via allocat-
ing certain memory space and start either writing
to or reading from it using continuous blocks.

4. Parallel BZIP2 Compression [9]: is a parallel im-
plementation of the bzip2 block-sorting file com-
pressor that uses pthreads and achieves near-
linear speedup on SMP machines.

5. Gzip Compression [10]: measures the perfor-
mance of I/O for the compression of a 2 GB file.

6. John the Ripper (BlowFish) [11]: is a password
cracking tool which takes text string samples, en-
crypts it with BlowFish and compares the output
to the encrypted string.

4 EVALUATION
4.1 Computation speed performance
For the evaluation of the CPU performance among LXD,
Docker and Virtual Machine, we use Stream CPU, John the
Ripper (BlowFish) and Parallel BZIP2 Compression as bench-
mark tests.

Fig. 1. Stream CPU performance for copy, scale, triad and
 add operations

Stream CPU counts how many bytes get moved from one
placein memory to another. The Table 1 shows the count of
bytes and FLOPs in each iteration of the STREAM loop.

 TABLE 1:STREAM OPERATIONS

From among the multiple repetitions of these four operations,
the top 10 results are chosen. As can be observed from the Fig.
1, though the docker container is slightly lower in
performance than the virtual machine, the LXD container’s
performance is way lower than the other two. Keep in mind
that the Stream tests are single processor benchmarks.

 Fig. 2. Speed of execution of John the Ripper (BlowFish)

John the Ripper (BlowFish) has two types of workloads which
include generating hashes of the candidate passwords and the
comparison of the computed hashes against the encrypted
strings. It is a multiprocessor test. According to the Fig. 2, LXD
containers are performing a bit better than the virtual machine
and the docker container. The performance speed of virtual
machine and the docker are comparable to each other.

Name Kernel Bytes/iter FLOPS/iter

COPY a(i) = b(i) 16 0

SCALE a(i) = q*b(i) 16 1

SUM a(i) = b(i) + c(i) 24 1

TRIAD a(i) = b(i) + q*c(i) 24 2

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 9, September-2016 1416
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Fig. 3. Time taken by Parallel BZIP2 Compression

Parallel BZIP2 Compression measures the time to compress a
.tar file and is a parallel multiprocessor test. On comparing the
results in Fig. 3, we find that even though the virtual machine
has performed slightly better than LXD container, the latter is
still performing better than docker container.
As can be inferred from the results of the three benchmarks,
LXD container performs relatively better when a parallel mul-
tiprocessor application is executed in its environment as com-
pared to the uniprocessor workload.

4.2 Memory performance
Memory performance is measured by the executing the
RAMspeed SMP benchmark tests on the three environments.

Fig. 4.Speed of completion of the four operations of RAMspeed SMP

RAMspeed SMP workloads consists of integer and float opera-
tions such as copying data from one memory location to
another, adding data from two memory locations, multiplying
the memory value and updating the location with the result.
As depicted in the Fig. 4, the three virtualization environments
do not differ from each other significantly. LXD container is

lower in performance than the other two, but with less than
6% of performance difference.
So we can conclude that the memory overhead difference be-
tween virtual machine, docker container and LXD container is
not of any big significance.

4.3 I/O storage performance
In order to evaluate the I/O bandwidth performance,
we used Dbench, IOzone and AIO-Stress benchmark tests
in our test environments.

 Fig. 5. Performance results for I/O for varying number of parallel
client processes under Dbench benchmark

Dbench tool generates I/O workload by making calls to the
local filesystem. Using this tool, predictions can be made
about the maximum number of client applications that the
local file system can handle, before the performance of I/O
operations starts to degrade as the stress level increases. As
can be seen from Fig. 5, the I/O operations in LXD, with ZFS
as the default filesystem, takes a hit when the number of
concurrent clients are more than 12. Whereas, VM can handle
up to 128 clients simultaneously. I/O performance in docker,
on the other hand, does not fluctuate much and remains fairly
constant even after increasing the number of parallel clients
from 48 to 128.
GzipCompression benchmark tests the I/O bandwidth per-
formance for a real world example for the compression of a 2
GB file. Fig. 6 shows docker container to be slightly ahead in
performance speed, followed by virtual machine and LXD
container. Though there is a slight difference in performance,
it is inconsequential in nature.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 9, September-2016 1417
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Fig. 6.Disk performance during compression test

LXD container performs equal to its peers in a single client
environment, but starts losing out as the number of parallel
clients increases. As the parallel reads and writes increase, the
overhead latency in the layered design of LXD grows more
significant. Thus, LXD container is better equipped for non-
parallel I/O applications.

4.4 Stateful snapshot duration
 Here, we compare the amount of time taken in capturing
the snapshots (filesystem + memory) of both LXD container
and virtual machine. Docker does not support the concept of
memory snapshots, though it is under active development as a
CRIU library, therefore, this section excludes docker from the
comparison.

Fig. 7.Time taken to capture a stateful snapshot

When taking a snapshot of a virtual machine, the process of
snapshot has to capture the kernel files also. This is not re-
quired in the case of LXD as it only requires the filesystem and
the memory state of the container.As we can see from the Fig.
7, the process of taking a LXD snapshot is faster than that of a
virtual machine.

5 CONCLUSION
Docker is tightly coupled with the native OS on which it runs.
With the arrival of LXD, one is no longer restricted to a single
flavor of OS container. With this paper, we have provided a
validation to the performance doubts surrounding LXD. As
we have seen in our experiment, Docker and LXD have mini-
malistic overhead, especially in the case of CPU and memory
performance. One will still need to carefully evaluate I/O-
intensive applications against the containers and the perfor-
mance of these containers under mixed workloads.
LXD is comparable in performance to a virtual machine and
supports the running of clean Linux flavors.It also has main-
tainability and remote automation in its arsenal. Thus, it can
become an ideal host for application containerization technol-
ogies like Docker, which themselves are performant.
This concept of application virtualization on a lightweight OS
virtualization in itself is not a new notion. VMware has al-
ready announced its vSphere Integrated Container strategy
complemented with the release of its own stripped down ver-
sion of Linux OS, known as PhotonOS, which supports docker
like application containerization solutions and provides sup-
port for Administrator level manageability. But LXD provides
the familiarity of Ubuntu with all the other features.
There are still a lot of stability issues with LXD like automatic
network configuration on live migration of the container, disk
and multiprocessor performance, which needs to get ad-
dressed. We will have to wait and see what LXD comes up
with to survive in this rapidly evolving world of virtualiza-
tion.

REFERENCES

[1] LXC, https://linuxcontainers.org, last accessed 28/Sept/2016
[2] Stéphane Graber, Getting started with LXD,

https://insights.ubuntu.com, last accessed 27/Sept/2016
[3] KVM, http://www.linux-kvm.org/page/Main_Page, last accessed

19/Sept/2016
[4] Microsoft Hyper-V, https://en.wikipedia.org/wiki/Hyper-V, last

accessed 19/Sept/2016
[5] XEN, https://en.wikipedia.org/wiki/Xen, last accessed

19/Sept/2016
[6] Stream, http://www.cs.virginia.edu/stream/ref.html, last accessed

30/Sept/2016
[7] Dbench, https://dbench.samba.org/, last accessed 22/Sept/2016
[8] RAMspeed SMP, http://alasir.com/software/ramspeed/, last ac-

cessed 29/Sept/2016
[9] Parallel BZIP2 Compression, http://compression.ca/pbzip2/, last

accessed 30/Sept/2016
[10] Gzipcompression benchmark,

https://openbenchmarking.org/test/pts/compress-gzip/, last ac-
cessed 27/Sept/2016

[11] John the Ripper, http://www.openwall.com/john, last accessed
26/Sept/2016

IJSER

http://www.ijser.org/
http://www.google.com/url?q=http%3A%2F%2Fwww.linux-kvm.org%2Fpage%2FMain_Page&sa=D&sntz=1&usg=AFQjCNFvnuExF8l55s_EsIzkw2_6OvM9uQ
https://www.google.com/url?q=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FHyper-V&sa=D&sntz=1&usg=AFQjCNEzFPQAqxlPsAMOhpJmBVzWYaOBQA
https://www.google.com/url?q=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FXen&sa=D&sntz=1&usg=AFQjCNH14P2YKdnRePsA8ScI_t0vz_lWcQ

	1 Introduction
	2 Environment
	3 Benchmarks
	4 Evaluation
	4.1 Computation speed performance

	Stream CPU counts how many bytes get moved from one placein memory to another. The Table 1 shows the count of bytes and FLOPs in each iteration of the STREAM loop.
	TABLE 1:Stream operations
	From among the multiple repetitions of these four operations, the top 10 results are chosen. As can be observed from the Fig. 1, though the docker container is slightly lower in performance than the virtual machine, the LXD container’s performance is ...
	John the Ripper (BlowFish) has two types of workloads which include generating hashes of the candidate passwords and the comparison of the computed hashes against the encrypted strings. It is a multiprocessor test. According to the Fig. 2, LXD contain...
	4.2 Memory performance
	4.3 I/O storage performance
	In order to evaluate the I/O bandwidth performance,
	we used Dbench, IOzone and AIO-Stress benchmark tests
	/in our test environments.

	Fig. 5. Performance results for I/O for varying number of parallel client processes under Dbench benchmark
	Dbench tool generates I/O workload by making calls to the local filesystem. Using this tool, predictions can be made about the maximum number of client applications that the local file system can handle, before the performance of I/O operations starts...
	LXD container performs equal to its peers in a single client environment, but starts losing out as the number of parallel clients increases. As the parallel reads and writes increase, the overhead latency in the layered design of LXD grows more signif...
	4.4 Stateful snapshot duration

	5 Conclusion
	References

